EE] DEGREE PROJECT IN TECHNOLOGY,

S,
FKTH Y

FIRST CYCLE, 15 CREDITS
STOCKHOLM, SWEDEN 2019

VETENSKAP
28 OCH KONST 2%

et

Reaction Wheel Stabilized
Stick

PONTUS GRASBERG
BILL LAVEBRATT

KTH ROYAL INSTITUTE OF TECHNOLOGY
SCHOOL OF INDUSTRIAL ENGINEERING AND MANAGEMENT

&

By,
FKTHY

VETENSKAP
39 OCH KONST 0%

L

Reaction Wheel Stabilized Stick

Bachelor's Thesis in Mechatronics

PONTUS GRASBERG
BILL LAVEBRATT

Supervisor: Nihad Subasic
Examiner: Nihad Subasic

TRITA-ITM-EX 2019:38

Abstract

Control theory can be used to make an unstable system
stable. This thesis seeks to do this, where the system is a
two DOF inverted pendulum with reaction wheels for sta-
bilisation. The thesis also seeks to answer what is most im-
portant for making it stabilize for a longer period of time.
It was decided that a state space controller was to be used
with various sensors measuring the states. To be able to de-
sign a functioning demonstrator, a mathematical model of
the system dynamics was developed. In the end the demon-
strator proved to function as desired, being able to balance
indefinitely. It was found that it is absolutely necessary to
either give the controller a perfect set point or to implement
an automatic set point.

Keywords: Mechatronics, Reaction wheel, Inverted pen-
dulum, State space, Control theory.

Referat

Reaktionshjuls stabiliserad pinne

Reglerteknik kan anvindas for att gora ostabila system sta-
bila. Malet med detta projekt var att gora detta med ett
system i form av en inverterad pendel med tva frihetsgrader
som balanseras med hjélp av tva svidnghjul. Projektet soker
att besvara fragan om vad som &r de viktigaste faktorerna
for att fa systemet att vara stabilt 6ver en ldngre tid. En
tillstandsaterkoppling anviandes som regulator vilket inne-
bar att flera olika sensorer behdvdes for att méta de olika
tillstanden. For att kunna konstruera en fungerande proto-
typ utvecklades en matematisk modell av systemet vilken
anvandes for simulering av systemet. Till slut konstruerades
en fungerade prototyp som till synes kunde balansera éver
ooverskadlig tid. En av de faktorer som visade sig paver-
ka huruvida systemet uppnéar stabilitet 6ver langre tid var
hur bra referenspunkt som gavs till regulatorn, det vill s&-
ga det tillstand som regulatorn reglerar systemet mot. Det
visade sig vara mojligt att implementera en sjalvjusterande
referenspunkt som gjorde systemet stabilt 6ver tid.

Acknowledgements

First of all we would like to thank KTH prototype center and Tomas Ostberg for
helping us make the reaction wheels. Also a big thanks to Staffan Qvarnstrém
for helping us order parts and finding motors for the project as well as to the lab
assistants for helping us and answering various questions.

Contents

Contents
1 Introduction 3
1.1 Backgroundo 3
1.2 Purpose 3
1.3 Scope 3
1.4 Method 4
2 Theory 5
2.1 System dynamics Lo 5)
2.1.1 Dynamics of the system)
2.1.2 Motor dynamics L Lo 6
2.1.3 State space model 6
2.2 Control design 7
2.2.1 Simulation and Pole Placement 8
2.3 SENSOTS . . . v e e e 9
2.3.1 Accelerometer 9
2.3.2 GYTOSCOPE . « v v v v v e 9
2.3.3 Halleffect sensor 10
24 Kalman filter 10
2.5 Controlling motors 10
3 Design and implementation 13
3.1 Motors 13
3.1.1 Motor driver 13
3.2 Measuring motor speed 14
3.3 Inertial measurement unit 15
3.4 Construction 15
3.5 Code . . .o 17
3.6 Tuning of the controller 18
3.6.1 Automaticset point 18

4 Results 21

5 Discussion and conclusion
5.1 Discussion e
5.2 Conclusion

6 Recommendations and future work
6.1 Recommendations
6.2 Future work

Bibliography
Appendices

A Datasheets
B Schematics

C Code
C.1 MATLAB code s
C.2 Arduino code

23
23
24

25
25
25

27

27

29

32

List of Figures

2.1
2.2
2.3
2.4
2.5
2.6

3.1
3.2
3.3

3.4
3.5
3.6
3.7

4.1

4.2

Al
A2

B.1

Force analysis of inverted pendulum. Drawn in draw.io.
Simulation of angular deviation of the pendulum. Made in MATLAB.

Simulation of corresponing input voltage. Made in MATLAB.
MEMS accelerometer structure [3]. 0L
Two examples of PWM signals [6]
A simple H-bridge circuit [7]o oL

INlustration of how to measure direction. Drawn in draw.io.

Plot of measured angular velocity of reaction wheel. Made in MATLAB.

The angle as given by the accelerometer, gyroscope and Kalman filter.
Made in MATLAB.
Cad model. Made in Solid Edge ST10.
The finished demonstrator while balancing.
Flowchart. Drawn in draw.do.
Shows how the set point moves compered to the angle while stabilising.
Made in MATLAB.

Shows the angle and angular velocity of the IMU while stabilising. Made
in MATLAB. e
Shows how the set point and the angle moved when the center of mass
was changed while stabilizing. Made in MATLAB.

Datasheet for the motor [12].
General specifications for pololu H-bridge [13].

Schematic of all the electrical components. Made using Fritzing.

22

List of Figures

Nomenclature
Name | Description
m The mass of the structure
I The moment of inertia of the structure
0 Angular diviation from equilibrium point
l Height of the center of mass
M otor | torque applied by motor
w Angular velocity of reaction wheel
koo Torque constant of motor
Ry Terminal resistance of motor
U Voltage to the motors
GIMU Angle of IMU
dx Set point
T Time period between the updates of PWM signal
L Feedback gain vector
k Gain for automatic set point

List of Abbreviations

Abbreviations | Description

DOF Degrees of Freedom

IMU Inertial measurement unit
MEMS microelectromechanical systems
PWM Pulse Width Modulation

ODE Ordinary differential equation
RPM Revolutions per minute

List of Figures

Chapter 1

Introduction

1.1 Background

The problem of balancing an inverted pendulum is a classical problem in the field
of dynamics and control theory. The problem arises for example when dealing with
rockets or self balancing robots. One method to balance the inverted pendulum is
with reaction wheels.

A reaction wheel is a flywheel that is designed to give a reaction torque when
torque is applied to it. Reaction wheels are primarily used in spacecrafts for atti-
tude control, eliminating the need for thrusters. The advantage of reaction wheels
is that they can apply a torque to a system in an environment where there is no
external structure or medium to provide a torque.

1.2 Purpose

The Purpose of the project is to use reaction wheels to stabilize an inherently
unstable system. In this case the system is a two DOF inverted pendulum, when
left alone the pendulum will fall. The objective is to keep the pendulum standing.
By using motors to apply torque on the reaction wheels reaction forces will arise
which could keep the pendulum standing. This thesis seeks to answer:

e In what way is it possible to construct a functioning demonstrator with the
resources available?

e What are the most important parameters in order to keep the system stable
over time?

1.3 Scope

Even though the dynamics of the system is nonlinear this thesis only considers linear
control methods. There are several types of controllers that could work, but this

3

CHAPTER 1. INTRODUCTION

thesis investigates only how a state space controller performs. A micro controller
will be used to control the system. The demonstrator shall not be of a height of
more than 0,4 m and shall carry all components needed except the power supply
for the motors.

1.4 Method

First the dynamics of the system was analysed and a mathematical model was
developed. With the mathematical model of the system, simulations were made in
MATLARB. The simulations were used to test various designs and controllers. With
constrains given by the simulations, components were chosen and gathered. The
demonstrator was built and tests were conducted to determine which parameters
are of the most importance to balance the pendulum.

Chapter 2

Theory

2.1 System dynamics

In order to understand the characteristics of the system and to be able to design
an effective control algorithm, a simplified mathematical model of the system was
developed.

2.1.1 Dynamics of the system

The dynamics of the pendulum can be simplified by analysing its dynamics in only
one plane. If the chosen plane is parallel with one of the reaction wheels the system
simplifies to that of an inverted pendulum in one DOF with a single reaction wheel
attached to it. This pendulum can only rotate around one axis. This simplification
can be made since the action of the second reaction wheel, perpendicular to the
plane, should not greatly affect the dynamics of the pendulum in the plane being
analysed.

According to figure 2.1 and Newtons second law, the rotational dynamics of the
pendulum around O can be described as

e, 10 = mglsin(0) — Muotor, (2.1)

where I is the moment of inertia in the z-direction of the pendulum at O, 6 is the
angular deviation from the equilibrium point when the pendulum is upright, m is
the mass of the system, [is the distance to the center of gravity and M,ot0r is the
torque applied by the motor on the reaction wheel. M, ,otor can be thought of as
the reaction torque between the pendulum and the reaction wheel. Therefore the
rotational dynamics of the reaction wheel can be described as

e+ I,&» = Mootor, (2.2)

where I, is the combined moment of inertia of the reaction wheel and the rotor of
the motor and w is the angular velocity of the reaction wheel and the motor.

CHAPTER 2. THEORY

Reaction wheel

MWOTOI'

7

Center of gravity

Figure 2.1. Force analysis of inverted pendulum. Drawn in draw.io.

Knowing that the same equations applies in the yz-plane the model should be
sufficiently accurate for the purpose to stabilize the pendulum.

2.1.2 Motor dynamics

The motors used in this project were a pair of brushed DC motors. A relation
between the angular velocity of a motor, the voltage applied on the motor and the
motor torque can be stated as

ko, hade

Mmotor = RA RA)

(2.3)

where ka¢ is the torque constant, R, is the terminal resistance and U is the voltage
applied on the motor[1].

2.1.3 State space model

To simplify the analysis of the system and the design of the controller, the system
dynamics can be written as a set of first order linear differential equations. Since
0 can be assumed to be small and sin(f) ~ 6 for small 0, equation 2.1 can be
linearised as

160 = mgld — Myyot0r- (2.4)

2.2. CONTROL DESIGN

The state variables x1, r9 and x3 are introduced as 1 = 0, x2 = 6 and T3 = W.
With equation 2.2, 2.3 and 2.4 the dynamics can now be written in the following
form

#(t) = Ax(t) + Bu(t)) (2.5)
y(t) = Cz(t) + Du(t) (2.6)
as
i 0 1 0][0
To| = ngR 0 ’}%ﬁ To| + —1’%’; u(t) (2.7)
IS A R e
I
y®) =1[1 0 0] |z (2.8)
T3

which is the state space model of the system. Here, u(t) is the input variable, or
the voltage in this case, and y(t) is the output variable, or the state that is to be
controlled, which in this case is 6.

2.2 Control design

The system itself is not asymptotically stable, which can be verified by computing
the eigenvalues of matrix A. If the real part of the eigenvalues are strictly negative
the system is asymptotically stable [2]. To change the dynamics of the system and
make it asymptotically stable, active feedback can be used by letting the voltage U
depend on the state variables.

In this project a state space feedback controller with integral action was chosen
as the controller. Integral action makes the system more robust to modelling errors
and disturbances [2]. A new state variable x4 is introduced to denote the integrator
state which is the integral of the output error. Let r denote the reference or the
wanted output, then the following holds:

ty=r—y=r—Cuz. (2.9)

The system becomes a closed-loop system as the states are fed back to form the
input as

ut)=—Le=—[Li Ly Ly Li : (2.10)

where the vector L contains the feedback gain. All states can be measured. The
resulting system now becomes

CHAPTER 2. THEORY

T A 0| |=x B 0
ARERIAmAmE o1
and with the feedback
T A 0 B x 0
H _([_C O] . ML) MEHE (2.12)

By choosing L, the poles of the system can be placed as desired. Since the system
is asymptotically stable, it will converge to a static state that satisfies r — Cx = 0.
In other words 1 = r. In this case r = 0 since the pendulum shall be balancing
around the equilibrium point where 6 = 0.

2.2.1 Simulation and Pole Placement

Simulation and pole placement were done in MATLAB. The code can be seen in
appendix C.1. The system dynamics is given by equation 2.12. The system of
differential equations can for example be solved numerically with a Runge-Kutta
method. A fourth ordered Runge-Kutta method was implemented in MATLAB. By
building the ODE solver and not using one of MATLABs predifined ODE solvers,
things like maximum voltage and anti windup could more easily be accounted for.
The simulation gives the behaviour of all the states, the torque applied by the
motors and the input voltage. Figure 2.2 and 2.3 show the angular deviation of
the pendulum and the input voltage when some poles with corresponding L were
chosen. Here the initial conditions of the states were chosen to be 0,1 rad for the
angular deviation of the pendulum and zero for the rest.

0.1 T

0.08 - -

0.06 - b

0.04 - b

radians

.0.02 1 1 1 1 1
0 0.5 1 1.5 2 25 3

Time [s]

Figure 2.2. Simulation of angular deviation of the pendulum. Made in MATLAB.

2.3. SENSORS

Input voltage
T

Voltage [V]

5 I I I I I
0 0.5 1 1.5 2 2.5 3

Time [s]

Figure 2.3. Simulation of corresponing input voltage. Made in MATLAB.

2.3 Sensors

In order to use a state space controller it is necessary to somehow measure or
estimate the states. In this project the states were measured by using a few different
sensors. The accelerometer and the gyroscope were used to measure the angle and
the angular velocity of the system, and the the Hall effect sensors were used to
measure the angular velocity of the reaction wheels.

2.3.1 Accelerometer

Accelerometers measure the acceleration. To measure the acceleration accelerom-
eters typically use a mass spring system which measures the capacitance. There
might be vibrations in the structure which for the accelerometer in this case are
unwanted noise. The measurement also has a bias which will be constant and can
therefore be mostly removed[3]. The principle of one type of MEMS accelerometer
is shown in figure 2.4.

[] B [] B
SPRING
MASS APPLIED
L u <: ACCELERATION
] T T o] o " s
€51« cs2

FIXED OUTER
PLATES

Figure 2.4. MEMS accelerometer structure [3].

2.3.2 Gyroscope

A gyroscope measures the angular velocity. It normally does this by having a
spinning disc and using the Coriolis force. A cheaper and often a more practical

CHAPTER 2. THEORY

alternative is to use a microelectromechanical system (MEMS) gyroscope. However
because the calculation of the angle requires integration of the angular velocity
measurement, the error of the gyroscope drifts with time [4]. The drifting of the
error is caused by multiple factors and has complex non-linear characteristics [4].

2.3.3 Hall effect sensor

A Hall effect sensor is a device that responds to a magnetic field by generating an
output voltage whose magnitude depends on that of the magnetic field. There are
Hall effect sensors with a built in Schmitt trigger making the output digital. Such
sensors were used to measure the angular velocity of the reaction wheels.

2.4 Kalman filter

Because of the noise that occurs in the MEMS sensors as described in section 2.3
it is of importance to filter the data gathered from the sensors. To achieve this a
Kalman filter was used. The name implies that the Kalman filter works as a filter,
however it works more like an observer. An observer is a system that estimates
unknown states with measured states. The idea of a Kalman filter is to use current
and past sensor readings and to use probability and statistics to minimise the mean
squared errors to estimate a state [5]. It was of importance to not simply filter
the data with for instance a butterworth low-pass filter, since such a filter would
delay the data signal in time, which can cause the system to become unstable or
overshoot when changing rapidly. If the measurements are very delayed the state
space controller reacts too slow to the change in angle and thereby making the
system more unstable. For a more exact mathematical description on Kalman filter
see [5].

2.5 Controlling motors

To control the motors it was necessary to be able to control the voltage given to the
motors. This can be achieved by sending a Pulse Width Modulation (PWM) signal
to an H-bridge. A PWM signal is, as the name implies, a signal consisting of pulses
of high and low. By changing the pulse width, or the portion of the time where
the signal is high, the mean value of the signal changes. The PWM signal opens
and closes switches in the H-bridge that control if current from the external power
supply can flow through. Using this technique the output voltage to the motors can
be controlled. Figure 2.5 shows 2 different PWM signals and the resulting average
voltage.

10

2.5. CONTROLLING MOTORS

Marr ow
Fulse —=

Wide
Fulse

High Average

Voltage

Low Average
Voltage "~~~ [I” ~

—_

Figure 2.5. Two examples of PWM signals [6]

An H-bridge is a circuit with transistors making it possible to switch the polarity
of the output voltage. This way the motors could be controlled in both directions.
Figure 2.6 shows a circuit of an H-bridge.

VCC

DC MOTOR

S4

\ o \

Figure 2.6. A simple H-bridge circuit [7]

11

Chapter 3

Design and implementation

This chapter describes the design of the demonstrator, the relevant hardware that
was used and the reasoning behind them. It also considers the software implementa-
tion. The simulation model in MATLAB with data from the CAD model indicated
how the demonstrator should be designed to function as desired. Due to cost limi-
tations and components available our ideal design could not be achieved and some
compromises had to be made.

3.1 Motors

Simulations were done in order to find approximate requirements for the motors.
The system performance is largely dependent on its mass and the power that the
motors can deliver, and since the power a motor can deliver is proportional to its
mass, there was no easy way to calculate the exact requirements on the specifications
of the motors. Here the mathematical model of the system dynamics that was built
was crucial. It made it possible to simulate the system behaviour with various
parameter values. A motor with high power to weight ratio could improve the
system performance. It was estimated that a motor that can deliver around 0,2
Nm of torque and with the mass of about 0,4 kg could stabilize the system. One
of the motors available with similar specifications was a motor manufactured by
Dunkermotoren of model GR 42x40. The mass of this model is 0,49 kg and it
can deliver 0,33 Nm during stall torque. It was found in the simulations that the
pendulum should be able to balance using this motor. The data sheet for the GR
42x40 motor can be seen in appendix A, figure A.1.

3.1.1 Motor driver

Since the Arduino is not powerful enough to drive the motors, an external power
supply had to be used. To control the polarity and the size of the voltage supplied
to the motors, a dual H-bridge was used. The aim was to be able to supply the
motors with 24 V which could draw as much as 4 A for short periods of time. From

13

CHAPTER 3. DESIGN AND IMPLEMENTATION

these conditions the H-bridge Pololu Dual VNH5019 Motor Driver was chosen. This
H-bridge can operate at 24 V and deliver a continuous current of 12 A per channel,
which is sufficient for the purpose. The VNH5019 also features PWM operation up
to 20 kHz which enables quieter and smoother running of the motors[8]. General

specifications for the H-bridge taken from the Pololu website can be seen in appendix
A figure A.2.

3.2 Measuring motor speed

The angular velocity of the motors can be measured using Hall effect sensors that
detect magnets which are attached on the reaction wheels. In order to tell which
direction the motors are rotating, two Hall effect sensors per motor were used. The
figure below illustrates how the direction is determined.

—

Sensor 1
Magnert 1 Q
Sensor 2
Magnet 2 Q

Figure 3.1. Illustration of how to measure direction. Drawn in draw.io.

When sensor 1 detects a magnet the system checks if sensor 2 is detecting a magnet.
If so, the magnets are moving to the right, otherwise the magnets are moving to
the left. By counting detections and measuring the time difference between the
detections the angular velocity can be calculated.

Angular velocity of reaction wheel
200 T T T T T . T

180

100

50

=50

Angular velocity [rad/s]

=100

-150 -

=200

Time [g]

Figure 3.2. Plot of measured angular velocity of reaction wheel. Made in MATLAB.

14

3.3. INERTIAL MEASUREMENT UNIT

Figure 3.2 shows the measured angular velocity of one of the reaction wheels where
the motor was given 24 volts for seven seconds, -24 volts for seven seconds and then
zero volts until the angular velocity became zero.

3.3 Inertial measurement unit

For measuring the angle a MEMS gyroscope and accelerometer was used. The
chosen sensor was the MPU-6050. As described in chapter 2 these measurements
have both noise and drift, therefore a Kalman filter was used. To implement the
Kalman filter a library and example code made by Kristian Sloth Lauszus was used
[9].

= Angle of Gyroscope
o —— Angle of Accelerometer|
Angle of Kalman filter

Figure 3.3. The angle as given by the accelerometer, gyroscope and Kalman filter.
Made in MATLAB.

Figure 3.3 shows the angle as given by the accelerometer, gyroscope and Kalman
filter. It can be seen that the accelerometer had a lot of noise and that the gyroscope
drifted with time as stated in section 2.3. The Kalman filtered data has low noise
and is not time delayed as some filters can cause, making it suitable for use in the
controller. Note that figure 3.3 shows two 90° turns of the system. In reality the
the demonstrator will only move a few degrees making the value given directly by
the accelerometer useless because of the noise to signal ratio.

3.4 Construction

It was decided that a platform to hold the components and the stick together would
be 3D-printed. The aim of the platform was to get the system as compact as possi-
ble and the weight close to the stick to get the center of mass approximately above
it. It was also of importance to fasten the motors to reduce vibrations caused by

15

CHAPTER 3. DESIGN AND IMPLEMENTATION

them. The design also features an adjustable height of the platform since there was
uncertainties about which height that would work. The stick chosen was a beam of
steel with a radius of 2 mm.

The reaction wheels were designed to have low mass while simultaneously keeping a
high moment of inertia. They were designed in Solid Edge and then manufactured
by using a water cutter to cut out the silhouette out of a sheet of steel, and then
milling material away from the inner parts to lower the mass while keeping a high
moment of inertia. The whole structure was then put together with screws and set
screw hubs as shown in figure 3.4 where the CAD model is seen. All of the electrical
components were also put on the platform and connected as the schematics figure
B.1 illustrates. Figure 3.5 shows the finished demonstrator while balancing. Here
the lower side of the platform is placed on a height of 10 cm and the diameter of
the reaction wheels is 15 cm.

Figure 3.4. Cad model. Made in Solid Edge ST10.

16

3.5. CODE

Figure 3.5. The finished demonstrator while balancing.

3.5 Code

An Arduino Uno was used as the controller unit due to its ease of use and in-
expensiveness. The code was written in Arduinos IDE and then uploaded to the
Arduino Uno. A simplification of the logical flow of the program is illustrated in the
flowchart in figure 3.6. In the main loop the data from the IMU is updated every
iteration, while the angular velocity of the reaction wheel is only recalculated and
updated when the hall sensors have detected more than three magnets going in the
same direction. This means the calculated angular velocity is the mean value of the
angular velocity during the last three detections whenever the angular velocity is
updated. Accordingly there are delays in this data and it could be more precise by
adding more magnets.

The PWM signal is updated when the time 7" has elapsed since the last time the
PWM signal was updated. When the PWM signal is updated a function is called
that takes the states as input and returns the voltage that should be sent to the
motor. The function basically uses equation 2.10 (v = —Lz) to calculate the volt-
age, but with the restriction of setting the voltage to 24 V if equation 2.10 gives a
voltage that exceeds 24 V. It also integrates the error to form the integrator state
as according to equation 2.9. Though if the voltage exceeds 24 V the input signal is
saturated and no integration is done. This is refereed to as an anti windup method
and it keeps the integrator from growing when the actuator is saturated and can not

17

CHAPTER 3. DESIGN AND IMPLEMENTATION

produce the wanted output. Anti windup prevents large overshoot and oscillations
in the output signal of the system [10].

Initialize

\ 4

Get IMU data

Filter IMU data

True
Magnetdetect > 3

Y
Calculate new
angular velocity

True
time - oldtime > T

Calculate new set
point

False

Calculate new
voltage

oldtime=time

Set PWM signal

Figure 3.6. Flowchart. Drawn in draw.io.

3.6 Tuning of the controller

In the simulation several different poles where tried with corresponding feedback
gain L. These L where implemented in the code. After several tests it became clear
which L worked best.

3.6.1 Automatic set point

The state space controller as described in section 2.1.3 relies on that the center of
mass is located at § = 0 and that the IMU is attached to the structure correctly.
Since the center of mass is not exactly at # = 0 and the IMU is a not completely

18

3.6. TUNING OF THE CONTROLLER

aligned to the line of center of mass, the data has to be compensated for this. This
is done by subtracting a small angle dx to the angle read by the IMU 60,/ before
it goes into the controller. This means the controller will try to get 0y = dx, and
therefore dr can be interpreted as the set point. dz compensates for the slanting
IMU and the center of mass not being precisely above the stick. If this compensation
is not exactly correct the stabilisation will fail after a short time. The system
will try to regulate itself to a state where the center of mass is not above the
interface between the ground and the stick. This will result in a small torque
constantly pulling in one direction and the reaction wheels will constantly have to
accelerate to keep up for this. The motors will build up speed until they can no
longer apply any torque. This problem can be solved by changing dx over time as
dxpy1 = dz, + k‘gi::%, where k is some positive gain. This means dx or the set
point will increase if dx > 073/ and decrease if dx < Orppy. If k is chosen so that
the set point change a bit slower than 67,77 it solves the problem of not knowing
the correct set point. The set point will automatically go towards a good value. See
figure 3.7 where the stabilisation starts at time=0.

3 T T T T
Angle of IMU, 8,

Set point, dx

Angle [deg]

I I 1 1 I I I 1 1
0 2 4 6 8 10 12 14 16 18 20
Time [s]

Figure 3.7. Shows how the set point moves compered to the angle while stabilising.
Made in MATLAB.

A mathematical proof for that this should work could not be found. But there are
some similar work where similar solutions were briefly discussed [11].

19

Chapter 4

Results

When implementing the state space controller on its own the system never seemed
to be able to balance over time. The pendulum could stand up for a while but
always fell after tens of seconds or at best after some minutes. We strongly suspect
that the problem was because of the set point, which is discussed in chapter 3.6.
After the implementation of the automatic set point, the system became seemingly
stable. There was no sign that the system could not balance indefinitely when no
disturbances were applied. Figure 4.1 shows the angle and angular velocity of the
IMU while stabilising.

25 T

Angle of IMU [deg]
——— Angular ve\ncrty nf IMU [degis]

r
T

o

I V' mﬂ,’“\u“m “U“ |

I I I I I
42 a4 46 48 50 52 54 56
Time [s]

o

o
T
|

&
=

Angle [deg] / Angular velocity [deg/s]
S s

o
T
|

o
2

Figure 4.1. Shows the angle and angular velocity of the IMU while stabilising.
Made in MATLAB.

The demonstrator could handle disturbances such as someone pushing slightly on its
platform. Also the automatic set point made the system able to handle changes to
the center of mass while balancing. Figure 4.2 shows the behaviour when a mass is
put near one of the platforms edges. It illustrates how the system automatically finds
the new angle it should stabilize around. In the end L = [-550 —60 —0, 0585 1000],
k = 0,00003 and T" = 0,001 seconds were considered to give the best performance.
This is while the platform was placed on a height of 10 cm. Large vibrations started

21

CHAPTER 4. RESULTS

to occur when the platform was placed a couple of centimetres higher.

— Angle of IMU
— Set point

0.5

Angle [deg]

35 40

45 50

70
Time [s]

Figure 4.2. Shows how the set point and the angle moved when the center of mass
was changed while stabilizing. Made in MATLAB.

22

Chapter 5

Discussion and conclusion

5.1 Discussion

In order to acquire data to make the graphs in this report the arduino had to send
data to the computer. Since the arduino did not have wireless transmission built in
nor was this added, this data transfer went through a cable. Because of the rather
thick cable the system was not optimal when collecting data. The cable caused dis-
turbances by pulling on the system. This was however not the greatest disturbance
to the system while sending data. When the Arduino sent data there were delays
causing the code to slow down. This made the system more unstable and caused
an increased swaying movement that can be seen in figure 3.7, 4.1 and 4.2. To deal
with this effect data was sent less often to the computer. It made the system more
stable but reduced the resolution of the data shown in figure 3.7, 4.1 and 4.2.

The height of the platform proved to be an important factor to make the sys-
tem stable. This was predicted with the mathematical model of the system. What
was not as anticipated were the large vibrations that occurred when the the height
of the platform was increased. The objective was to put the platform a bit higher,
but it turned out that the vibrations made this very difficult. Apart from the stick
being to weak, the reaction wheels were not perfectly symmetrical and this might
have caused unnecessary excitement to the stick making it vibrate.

The first feedback gain L that was implemented in the micro controller was accord-
ing to the simulations enough to make the system stable. It was then discovered
that an L that was predicted to give a much faster system was superior. This was
probably due to the delays that occurred in the real system that had not been ac-
counted for in the simulations. Also the mathematical model was an approximation
and was not expected to describe the system perfectly.

23

CHAPTER 5. DISCUSSION AND CONCLUSION

5.2 Conclusion

Several parameters such as the mass, the height of the center of mass and the
moment of inertia of the reaction wheels are of importance to get the system stable.
As expected it is important to implement a good controller and especially a correct
set point so that the system does not try to stabilize towards a wrong angle. While
methods for finding a good set point can be developed, the system is still very
sensitive to changes in the center of mass and may still fail to balance after some
time. In order to make the system stable over time an automatic set point was
implemented as described in 3.6.1, which makes the system stable indefinitely.

24

Chapter 6

Recommendations and future work

6.1 Recommendations

Even if the demonstrator worked it had some flaws and there are room for im-
provements. There were resonance frequencies in the system when the height of
the platform was increased. For future work it would be of importance to use a
stiffer stick for the demonstrator. It would also be recommended to use reaction
wheels that are symmetrical as to not cause any vibrations. Finally it would be rec-
ommended to use a rotary encoder to measure the angular velocity of the reaction
wheels with higher precision.

6.2 Future work

Future work can for example be to investigate how high the system could be made
and still be stable. One could also look at how noisy or biased state measurements
effect the system. It would be interesting to investigate more profoundly how the
system handles disturbances and see how robust the system is. It would also be of
interest to attempt to integrate the power supply on the pendulum and make the
system independent of outer facilities.

25

Bibliography

H Johansson. Elektroteknik. KTH, Department of Machine Design, Mecha-
tronic.

L Glad T. Ljung. Reglerteknik. Studentlitteratur AB.

0.J. Woodman. An introduction to inertial navigation. Tech. rep. University
of Cambridge.

C.-X. Shiau J.-K. Huang and M.-Y Chang. “Noise Characteristics of MEMS
Gyro’s Null Drift and Temperature Compensation.” In: Journal of applied
Science and Engineering 15.3 (2012), pp. 239-246.

G Welch G. Bishop. An Introduction to the Kalman Filter. Tech. rep. Univer-
sity of North Carolina at Chapel Hill, Department of computer Science.

Pulse Width Modulation. URL: https://www.electronics-tutorials.ws/
blog/pulse-width-modulation.html (visited on 05/01/2019).

What is an H-Bridge? URL: https://www.build-electronic-circuits.
com/h-bridge/ (visited on 05/01/2019).

H Amlinger. Reduction of Audible Noise of a Traction Motor at PWM Oper-
ation. Tech. rep. KTH.

K Lauszus. Kalman Filter. URL: https://github. com/TKJElectronics/
KalmanFilter (visited on 05/01/2019).

Erik Torstensson. Comparison of Schemes for Windup Protection. Tech. rep.
Lund University Department of Automatic Control.

P Brevik. Two-Axis Reaction Wheel Inverted Pendulum. Tech. rep. Norwegian
University of Science and Technology.

GR 42x40. URL: https://www.dunkermotoren. com/uploads/tx_products/
downloads/MKS/gr-42x40-8842702010 . pdf (visited on 05/07/2019).

Pololu Dual VNH5019 Motor Driver Shield for Arduino. URL: https://www.
pololu.com/product/2507/specs (visited on 05/07/2019).

27

https://www.electronics-tutorials.ws/blog/pulse-width-modulation.html
https://www.electronics-tutorials.ws/blog/pulse-width-modulation.html
https://www.build-electronic-circuits.com/h-bridge/
https://www.build-electronic-circuits.com/h-bridge/
https://github.com/TKJElectronics/KalmanFilter
https://github.com/TKJElectronics/KalmanFilter
https://www.dunkermotoren.com/uploads/tx_products/downloads/MKS/gr-42x40-8842702010.pdf
https://www.dunkermotoren.com/uploads/tx_products/downloads/MKS/gr-42x40-8842702010.pdf
https://www.pololu.com/product/2507/specs
https://www.pololu.com/product/2507/specs

Appendix A

Datasheets

>> GR 42x40 | cont. 21 W, peak 38 W

» Mechanical commutation through mufti bar » Mechanische Kommutierung Uber vielteiligen

commutator provides long lifetime Kollektor bietet lange Lebensdauer
» Operation in both directions of rotation » Drehrichtung Rechts-/ Linkslauf
» Ball bearing at motor output shaft is standard ~ » Motorwelle abtriebsseitig kugelgelagert ist Standard
» Cutom shaft length and diameter, shaft on » Abweichende Wellenlangen und -durchmesser,

both sides, special winding, higher protection beidseitige Welle, Sonderwicklung,

class up to IP 67 hohere Schutzart bis IP 67
Data/ Technische Daten GR 42x40
Nominal voltage/
Nennspannul VDG = e 19
Nominal current/ A 57 12 08
Nennstrom)))
Nominal torque/ Nom? 53 57 57
Nennmoment)))
Nominal speed/ 3
Nenndrehzahl pm 3750 =100 S400
Friction torque/ 4

eibungsmoment Nem 08 0.8 0.8
Stall torque/ -
Anhaltemoment D553 o 8 36
No load speed/ .
Leerlaufdrehzahl rpm’ 4550 3800 3050
Nominal output power/ W 208 185 203
Dauerabgabeleistung : : N
Maximum output power/ -
Maximale # eleistung wr 37.95 323 36.5
Torque constant/ oy
Drehmomentkonstante XE i 584 913
Terminal Resistance/ a 0.91 40 104
Anschlusswiderstand)
Terminal inductance/ mH 4 5.1 157
Anschlussinduktivitat :
Starting current/ -
Anlaufstrom A 13.2 5.68 3.97
No load current/)
Leerlaufstrom A i 013 iz
Demagnetisation current/ A 24 105 63
Entm: sierungsstrom : -
Rotor inertia/
Rotor Tragheitsmoment gem® Y e iy
Weight of motor/ K 0.49 0.49 0.49
Motorgewicht 9 N i i

*) A8, = 100 K; **) 9, = 20°C ™) at nominal point/ im Nennpunkt

Figure A.1l. Datasheet for the motor [12].

29

APPENDIX A. DATASHEETS

General specifications

Motor driver: VNH5019
Motor channels: 2
Minimum operating voltage: 55V
Maximum operating voltage: 24 v2
Continuous output current per channel: 12A
Peak output current per channel: 30A
Current sense: 0.14 VIA
Maximum PWM frequency: 20 kHz
Reverse voltage protection?: Y

Figure A.2. General specifications for pololu H-bridge [13].

30

31

APPENDIX B. SCHEMATICS

Appendix B

Schematics

VNH-5019
VNH-5019

| ‘ Arduino E i M1

DIAG/EN
[sormx f—— N vi
| S| I U 1A %
[03 PWM N PP 1
: B - L. w T
D6 PWM [\b OUT 2A
—< Arduino |
— — y b ouT28
. (Rev3) l 2PWM
= |
MPU-6050
> > i o
g= % S L28 % 25
¥29 2ed &= H S i
¢
Hall Effect Sensor Hall Effect Sensor Hall Effect Sensor Hall Effect Sensor

Figure B.1. Schematic of all the elecgéical components. Made using Fritzing.

Appendix C

Code

C.1 MATLAB code

33

statespace_motor_integrator.m

% Proj ect nane: Reaction Weel Stabilized Stick

% Bachel or thesis in nmechatronics at KTH, spring 2019

% Bill Lavebratt, Pontus G éasberg

% Description of code:

% Mat | ab program for simulation of the system Needs the function
RK4syst k. m

%It predicts how the systemw || behave when inplenenting a State
space

% controller

clear all, clc, close all
m=1. 75; % 1.734; % Mass of the system from cad nodel
R=0. 14; % Di stance frominterface between stick and

ground to the center of mass, from cad nodel

| = 350/ 100"2; % Monent of inertia of the system at the
i nterface between stick and ground, from Cad nodel

| hh=10. 196/ 100" 2; % Morent of inertia of the reaction wheel,
from Cad nodel

| =110/ (1000*100"2) ; % Moment of inertia of the rotor in notor,
from dat asheet of notor

| h=lI hh+I m % Conbi ned nonent of inertia of the reaction
wheel and notor

g=9. 82; % Gravitational acceleration

k2f i =5. 84/ 100; % Torque constant of notor, from datasheet of
not or

Ra=4. 2; % Term nal resistance, from datasheet of notor

% St at e space nodel

A=[0O 1 0

nfg*R/ | 0 k2fin2/(1*Ra);
0 0 -k2fi”r2/(1h*Ra)];

B=[0; -k2fi/(I*Ra); k2fi/(Ih*Ra)];
C=[1 0 0];

% St at e space nodel when im penenting the integrator
Any=[A zeros(size(A 1),1);-C 0];

Bny=[B; 0] ;

Cny=[C 0] ;

ref=0; % Set point

D=[zeros(si ze(A 1),1);1];

Lny = place(Any, Bny, [-2,0,-1+0.5i -1-0.5i]); % G ves the feedback
gain constants in L as a function of the poles of the system

Amax=[A zeros(size(A 1),1); zeros(1,4)]; % Is used when desired
voltage is larger than the nmaxi num al | owed.

Urex=24; % Maxi mum vol t age

% System of differential equations of the systemw th controller and
anti w ndup, accounts for Umax.

f=@tvec, yvec) ((((Any-Bny*Lny)*yvec' +ref*D)*(abs(-

yvec(end, :) *Lny') <=Unax)) +(Amax*yvec' +Bny* Unax*abs(-yvec(end, :)*Lny")/

(-yvec(end, :)*Lny"'))*(abs(-yvec(end,:)*Lny"')>Urax)"')";

y0=[0.125 0 0 0]; % Initial conditions of the states [Agle, Angular

vel ocity, Angular velocity of recation wheel, Integraion of the
error]

tspan=[0 10]; % Si nul ation spans over this tine.

h=0. 001; % Step length in ODE sol ver.

[tv, yv] =RK4syst k(f, tspan, y0,h); % Sol ution of differential equation
with inplenmentation of RK4, See code "RK4systk.m"

figure

plot(tv,yv(:,1))

grid on, title(' Angle of pendulum\theta'), xlabel('t [s]'),

yl abel (' rad');

figure

plot(tv,yv(:,2))

grid on, title(' Angular velocity of pendulum), xlabel ('t [s]'),
yl abel (" rad/s");

figure
plot(tv,yv(:,4))
grid on, title('Integral(ref-angle)'), xlabel ('t [s]');

figure

plot(tv,yv(:,3))

grid on, title(' Angular velocity of reaction wheel'), xlabel ('t [s]'),
yl abel (" rad/s");

% The voltage that was sent to the notor
U=-yv*Lny';
for ii=1:1ength(U)

if abs(U(ii))>Umax;

U(ii)=Umax*U(ii)/abs(U(ii));
end
end

Me@w, Ua) Ua*k2fi/ Ra-(k2fi)”~2/ Ra*w, % Equation of the notor
Mrot or =M yv(:,3),U); % The torque the notor gave

figure

pl ot (tv, U)
grid on, title('Voltage'), xlabel ('t [s]"), ylabel ('V);

figure
pl ot (tv, Mot or)
grid on, title(' Torque fromnotor'), xlabel ("t [s]'), ylabel (' Nm);

RK4systk.m

% Proj ect name: Reaction Wheel Stabilized Stick

% Bachel or thesis in mechatronics at KTH, spring 2019

% Bill Lavebratt, Pontus G asberg

% Description of code:

% Matl ab function for sinulation of the system

% | mpl enentation of a Runge-Kutta 4th Order nethod for System of
differential equations.

% The input is f: function of systemof differential equations, tspan
%start tine and end time of sinulation, yO: Initial conditions, h:

% st epl engt h.

% The output is tv: the tinme vector, yv: matrix of the solution to the
% system of differential equations.

function [tv,yv] =RKdsystk(f,tspan, y0, h)

n=(tspan(2)-tspan(1))/h;
tv=(tspan(1l)+h*(0:n))";
p=l engt h(y0);
yv=zeros(n+l, p);
yv(1,:)=y0;

for ii=1l:n
ki=feval (f,tv(ii),yv(ii,:));
k2=feval (f,tv(ii)+h/2,yv(ii,:)+h/2*kl);
k3=feval (f,tv(ii)+h/2,yv(ii,:)+h/2*k2);
kd4=feval (f,tv(ii)+h,yv(ii,:)+h*k3);
yv(ii+1,:)=yv(ii,:)+h/6*(kl+2*k2+2*k3+k4);

end

end

Published with MATLAB® R2017b

C.2. ARDUINO CODE

C.2 Arduino code

/*

* University: Royal Institute of Technology, KTH

* TRITA number: TRITA-ITM-EX 2019:38

* Authors: Bill Lavebratt and Pontus Gr sberg

*+ Name of project: Reaction wheel stabalized stick

*

* Description of code:

* Main program used to balance the reaction wheel stabalized stick.

x Filtered state measurements goes into a controler/regulator function

that calculates the desired voltage to the motors.
* Then the coresponding PWM signals is sent to an H-bridge.

*/

#include <PWM.h> // library for change in pwm freq
//Source: https://github.com/RCS101/PWM

#include <filters .h> //Library for Butterworth filter
#include <filters_defs.h>
//Source: https://github.com/MartinBloedorn/libFilter

#include <Wire.h>
#include <Kalman.h> // Source: https://github.com/TKJElectronics/
KalmanFilter

#define RESTRICT PITCH // Comment out to restrict roll to 90deg
instead

Kalman kalmanX; // Create the Kalman instances
Kalman kalmanY ;

float BY2; // Create varible for Butterworth filter of gyrorate
float BX2;

int i;
int ii;
float dxl1;
float dyl;

const float cutoff freq = 5.0; //Cutoff frequency in Hz for
Butterworth filter

const float sampling_time = 0.0055; //Sampling time in seconds.

IIR ::ORDER order = IIR::ORDER::0D3; // Order (OD1 to OD4)

// Low—pass filter

Filter f(cutoff_freq, sampling_ time, order); //Function for Butterworth
filter

Filter g(cutoff_ freq, sampling time, order);

float gyroXrate3; // Varible for gyrorate given by MPU
float gyroYrate3;

37

APPENDIX C. CODE

float dx=0.03; //Starting setpoint
float dy=0.006;

/* IMU Data x/

double accX, accY, accZ;
double gyroX, gyroY, gyroZ;
intl6_t tempRaw;

double gyroXangle, gyroYangle; // Angle calculate using the gyro only
double kalAngleX, kalAngleY; // Calculated angle using a Kalman filter

uint32_t timer;
uint8_t i2cData[14]; // Buffer for I2C data

// Varibles fo controller

float L1=-550; // State space feedback gain

float L2=-60;

float L3=-0.0585;

float L4=1000;

float v_ref=0;

float DT=0.001; //Time period between the updates of PWM signal (
Helpful for integrator part)

unsigned long oldTime=0;

//State variables for direction 1
float v_vinkl;

float v__hastl;

float radpsl;

float x41=0;

//State variables for direction 2
float v_vink2;

float v__hast2;

float radps2;

float x42=0;

// varible for controller

float Umax=24; // Maximum voltage
float Ul;

float U2;

//Pins for H-bridge
#define MIPWM 9
#define MI1INA 13
#define MIINB 12
#define MICS A0

int MIEN = 11;

#define M2PWM 10
#define M2INA 8
#define M2INB 7

38

C.2. ARDUINO CODE
int M2EN = 4;

int32_t freq =20000; //PWM freq

float pwmOutputl=0; // PWM signal varibles
float pwmOutput2=0;

float half revolutionsl; // Magnet detecting counters
float half_revolutions?2;

//Variables for Hall sensor
unsigned long DTHI;
unsigned long DTH2;
unsigned long timeoldl;
unsigned long timeold2;

int interruptPinll=2;

int interruptPin21=3;

int drPinl12=A0;

int drPin22=A1;

void setup () {
InitTimersSafe () ;
SetPinFrequencySafe (MIPWM, freq) ;

// For motor
pinMode (MIPWM, OUTPUT) ;
pinMode (M1INA, OUTPUT) ;
pinMode (M1INB, OUTPUT)
pinMode (M1EN, OUTPUT) ;
pinMode (M2PWM, OUTPUT) ;
(.
(
(

H

)
pinMode (M2INA, OUTPUT) ;
pinMode (M2INB, OUTPUT)
pinMode (M2EN, OUTPUT) ;

)

// Set initial rotation direction
digitalWrite (M1INA, HIGH) ;
digitalWrite (M1INB, LOW) ;
digitalWrite (MIEN, HIGH) ;
digitalWrite (M2INA, HIGH) ;
digitalWrite (M2INB, LOW) ;
digitalWrite (M2EN, HIGH) ;

//For Hall sensor

//Initialize the intterrupt pin (Arduino digital pin 2)
attachInterrupt (digitalPinToInterrupt (interruptPinll),
magnet__detectl , FALLING) ;

//Initialize the intterrupt pin (Arduino digital pin 3)
attachInterrupt (digitalPinToInterrupt (interruptPin21),
magnet__detect2 , FALLING) ;

pinMode (drPinl12, INPUT);

pinMode (drPin22 , INPUT) ;

39

APPENDIX C. CODE

Serial.begin(115200);

Wire. begin () ;

#if ARDUINO >= 157
Wire . setClock (400000UL) ; // Set I2C frequency to 400kHz

#else
TWBR = ((F_CPU / 400000UL) — 16) / 2; // Set I2C frequency to 400
kHz

#endif

i2cData [0] = 7; // Set the sample rate to 1000Hz — 8kHz/(7+1) = 1000
Hz
i2cData[1] = 0x00; // Disable FSYNC and set 260 Hz Acc filtering , 256
Hz Gyro filtering , 8 KHz sampling
i2cData[2] = 0x00; // Set Gyro Full Scale Range to 250deg /s
i2cData[3] = 0x00; // Set Accelerometer Full Scale Range to 2g
while (i2¢Write(0x19, i2cData, 4, false)); // Write to all four
registers at once
while (i2¢Write (0x6B, 0x01, true)); // PLL with X axis gyroscope
reference and disable sleep mode
while (i2cRead (0x75, i2cData, 1));
if (i2cData[0] != 114) { // Read "WHO_AM I' register
Serial.print (F("Error reading sensor'));
while (1);

}

delay (100); // Wait for sensor to stabilize

/* Set kalman and gyro starting angle x*/
while (i2cRead (0x3B, i2cData, 6));

accX = (intl6_t)((i2cData[0] << 8) | i2cData[l]);
accY = (intl6_t)((i2cData[2] << 8) | i2cData[3]);
accZ = (intl6_t) ((i2cData[4] << 8) | i2cData[5]);

// Source: http://www.freescale.com/files /sensors/doc/app_ note/AN3461
.pdf eq. 25 and eq. 26
// atan2 outputs the value of — to (radians) — see http://en.
wikipedia.org/wiki/Atan2
// It is then converted from radians to degrees
#ifdef RESTRICT PITCH // Eq. 25 and 26
double roll = atan2(accY, accZ) * RAD TO DEG;
double pitch = atan(—accX / sqrt(accY % accY + accZ * accZ)) x*
RAD_TO_DEG;
#else // Eq. 28 and 29

double roll = atan(accY / sqrt(accX % accX + accZ * accZ)) x*
RAD TO DEG;
double pitch = atan2(—accX, accZ) x RAD_TO_DEG;

#endif

kalmanX.setAngle(roll); // Set starting angle
kalmanY .setAngle (pitch);

gyroXangle = roll;

gyroYangle = pitch;

40

C.2.

ARDUINO CODE

timer = micros () ;

//MAIN LOOP

void

loop () {

MPU_Kalman(); // Read data given by Kalman filter

//

if

}

Calculates angular velocity [rad/s] for Hall effect sensors
(abs(half_revolutionsl)>3) {
DTH1 = (micros() — timeoldl);

radpsl = —3.1416%1000000%(half revolutionsl /DTHI1) /2.0;
half_revolutionsl = 0;
timeoldl = micros();

(abs(half_revolutions2)>3) {
DTH2 = (micros() — timeold2);

radps2 = —3.1416%1000000%(half_revolutions2/DTH2) /2.0;
half_revolutions2 = 0;
timeold2 = micros () ;

//Calculates new voltage when the time T has elapsed since last time

if

the voltage was calculated
((micros ()—oldTime)>(DT+1000000)){

dx1l=(—v_vinkl)/abs(v_vinkl); // Change set point
dx=dx+0.00003*dx1;

dyl=(—v_vink2)/abs(v_vink2);
dy=dy+0.00003%dy1;

//Calculate new voltage with the controller/regulator function that
takes the states and returns the desired voltage.
Ul=regulator (v_vinkl,v_ hastl,radpsl,&x41); // Voltage for motorl
U2=regulator (v_vink2,v_hast2 ,radps2,&x42); // Voltage for motor2
oldTime=micros () ;

// Set voltage to zero if some x or y angle is more than 20
degrees
//since the system canot be stabilized in that case.
if (abs(v_vinkl1%180.0/3.1415)>20 || abs(v_vink2%180.0/3.1415)>20){
U1=0;
U2=0;
}

// Sens desired voltage to functions that sets the PWM signal
corresponding to the desired voltage
motorlpwm (U1) ;

41

APPENDIX C. CODE

motor2pwm (U2) ;

}
}

/ /FUNKCTIONS BELOW

// Regulator function that takes the states and returns the voltage
float regulator(float v_vink, float v_hast,float s_hast,float =*x4){
float temp=xx4;
(xx4)=(xx4)+(v_ref—v_vink)«DT; //integrator part of controller
float UU;

UU=—(L1*v_vink+L2*v__hast+L3*s__hast+L4x*(*xx4));
// When the desired voltage is to large
if (abs (UU)>Umax) {
UU=Umaxx* abs (UU) /UU;
(*x4)=temp; // anti windup

return UU;

// Function that sets the PWM signal corresponding to the desired
voltage
void motor2pwm (float spanningl){

if (spanningl >=0){ //Decide the direction of the
current
digitalWrite (MIINA, HIGH) ;
digitalWrite (M1INB, LOW):
digitalWrite (MIEN, HIGH) ;
}
else{
digitalWrite (M1INA, LOW) ;
digitalWrite (M1INB, HIGH) ;
digitalWrite (MIEN, HIGH) ;
spanningl=abs (spanningl);
}
pwmQOutputl = map(spanningl, 0, Umax, 0 , 255); // Map the
potentiometer value from 0 to 255
pwmWrite (MIPWM, pwmOQOutputl) ;
}

// Function that sets the PWM signal corresponding to the desired
voltage
void motorlpwm(float spanning2){

if (spanning2 >=0){ //Decide the direction of the
current

digitalWrite (M2INA, HIGH);

digitalWrite (M2INB, LOW);

digitalWrite (M2EN, HIGH) ;
}

42

C.2. ARDUINO CODE

else{
digitalWrite (M2INA, LOW) ;
digitalWrite (M2INB, HIGH) ;
digitalWrite (M2EN, HIGH):
spanning2=abs (spanning2);

—~

}

pwmOutput2 = map(spanning2, 0, Umax, 0 , 255); // Map the
potentiometer value from 0 to 255

pwmWrite (M2PWM, pwmOutput2) ;

//This function is called whenever a magnet/interrupt is detected by
Hall sensorl, counts the detections of magnets
void magnet detectl ()
{
if (digitalRead (drPinl12)=I0W){
half revolutionsl++;
}
else {
half_revolutionsl ——;
}
}

//This function is called whenever a magnet/interrupt is detected by
Hall sensor2, counts the detections of magnets
void magnet detect2 ()
{
if (digitalRead (drPin22)=I0W){
half_ revolutions2++;
}
else {
half_revolutions2 ——;
}
}

//Kalman fuction made by Lauszus
void MPU_Kalman() {
/* Update all the values x/

tempRaw = (intl6_t) ((i2cData[6] <
gyroX = (intl6_t) ((i2cData[8] <<
gyroY = (intl6_t)

gyroZ = (intl6_t)

while (i2cRead(0x3B, i2cData, 14));
accX = (intl6_t) ((i2cData[0] << 8) | i2cData[1l]);
accY = (intl6_t) ((i2cData[2] << 8) | i2cData[3]);
accZ = (intl6_t) ((i2cData[4] << 8) | i2cData[5]) ;
< 8) | i2cData[7]);
8

() | i2cData[9]);

((i2cData[10] << 8) | i2cData[11]);

((i2cData[12] << 8) | i2cData[13]) ;;

double dt = (double) (micros() — timer) / 1000000; // Calculate delta
time

timer = micros () ;

// Source: http://www.freescale.com/files /sensors/doc/app_note/AN3461
.pdf eq. 25 and eq. 26

43

APPENDIX C. CODE

// atan2 outputs the value of — to (radians) — see http://en.
wikipedia.org/wiki/Atan2

// It is then converted from radians to degrees

#ifdef RESTRICT PITCH // Eq. 25 and 26
double roll = atan2(accY, accZ) *x RAD TO DEG;
double pitch = atan(—accX / sqrt(accY % accY + accZ % accZ)) =

RAD _TO DEG;
#else // Eq. 28 and 29
double roll = atan(accY / sqrt(acecX % accX + accZ % accZ)) =
RAD_TO DEG;
double pitch = atan2(—accX, accZ) x RAD TO_ DEG;
#endif

double gyroXrate = gyroX / 131.0; // Convert to deg/s
double gyroYrate = gyroY / 131.0; // Convert to deg/s

#ifdef RESTRICT PITCH
// This fixes the transition problem when the accelerometer angle
jumps between —180 and 180 degrees
if ((roll < —90 && kalAngleX > 90) || (roll > 90 && kalAngleX < —90))
{

kalmanX.setAngle(roll);
kalAngleX = roll;
gyroXangle = roll;
} else
kalAngleX = kalmanX.getAngle(roll , gyroXrate, dt); // Calculate the
angle using a Kalman filter

if (abs(kalAngleX) > 90)
gyroYrate = —gyroYrate; // Invert rate, so it fits the restriced
accelerometer reading

kalAngleY = kalmanY.getAngle(pitch, gyroYrate, dt);

#else

// This fixes the transition problem when the accelerometer angle
jumps between —180 and 180 degrees

if ((pitch < —90 && kalAngleY > 90) || (pitch > 90 && kalAngleY <
-90)) {
kalmanY .set Angle (pitch);
kalAngleY = pitch;
gyroYangle = pitch;

} else
kalAngleY = kalmanY.getAngle(pitch, gyroYrate, dt); // Calculate
the angle using a Kalman filter

if (abs(kalAngleY) > 90)
gyroXrate = —gyroXrate; // Invert rate, so it fits the restriced
accelerometer reading
kalAngleX = kalmanX.getAngle(roll, gyroXrate, dt); // Calculate the
angle using a Kalman filter
#endif

gyroXangle += gyroXrate % dt; // Calculate gyro angle without any

filter
gyroYangle += gyroYrate x dt;

44

C.2. ARDUINO CODE

gyroXrate3 = kalmanX.getRate(); // Calculate gyro angle using the
unbiased rate
gyroYrate3 = kalmanY.getRate () ;

// Reset the gyro angle when it has drifted too much

if (gyroXangle < —180 || gyroXangle > 180)
gyroXangle = kalAngleX;

if (gyroYangle < —180 || gyroYangle > 180)
gyroYangle = kalAngleY ;

float filterFrequency = 1000.0;
BX2 = f.filterIn (gyroXrate3); // Butterworth filtering
BY2 = g. filterIn (gyroYrate3);

v_vink1=3.1415/180.0«xkalAngleX—dx; //convert to Radians
v_vink2=3.1415/180.0xkalAngleY —dy;

v_hast1=3.1415/180.0«BX2;
v_hast2=3.1415/180.0%xBY2;

}

/* Copyright (C) 2012 Kristian Lauszus, TKJ Electronics. All rights
reserved .

This software may be distributed and modified under the terms of the
GNU

General Public License version 2 (GPL2) as published by the Free
Software

Foundation and appearing in the file GPL2.TXT included in the
packaging of

this file. Please note that GPL2 Section 2[b] requires that all works
based

on this software must also be made publicly available under the terms
of

the GPL2 ("Copyleft").

Contact information

Kristian Lauszus, TKJ Electronics

Web : http://www. tkjelectronics .com
e—mail : kristianl@tkjelectronics.com
*/

const uint8_t IMUAddress = 0x68; // ADO is logic low on the PCB
const uintl6_t I12C_TIMEOUT = 1000; // Used to check for errors in I2C
communication

uint8_t i2¢Write (uint8_t registerAddress, uint8_t data, bool sendStop)

{

45

APPENDIX C. CODE

return i2c¢Write(registerAddress, &data, 1, sendStop); // Returns 0 on
success
}

uint8_t i2c¢Write (uint8_t registerAddress, uint8_t xdata, uint8_t length
, bool sendStop) {
Wire. beginTransmission (IMUAddress) ;
Wire. write (register Address);
Wire. write (data, length);
uint8 t rcode = Wire.endTransmission (sendStop); // Returns 0 on
success
if (rcode) {
Serial.print (F("i2¢Write failed: "));
Serial.println (rcode);
}
return rcode; // See: http://arduino.cc/en/Reference/
WireEndTransmission
}

uint8_t i2cRead (uint8_t registerAddress, uint8_t xdata, uint8_t nbytes)
{
uint32_t timeOutTimer;
Wire. beginTransmission (IMUAddress) ;
Wire. write (registerAddress);
uint8_t rcode = Wire.endTransmission(false); // Don’t release the bus
if (rcode) {
Serial.print (F("i2cRead failed: "));
Serial.println (rcode);
return rcode; // See: http://arduino.cc/en/Reference/
WireEndTransmission
}
Wire.requestFrom (IMUAddress, nbytes, (uint8 t)true); // Send a
repeated start and then release the bus after reading
for (uint8_t i = 0; i < nbytes; i++) {
if (Wire.available ())
data[i] = Wire.read () ;
else {
timeOutTimer = micros () ;
while (((micros() — timeOutTimer) < I12C_TIMEOUT) && !Wire.
available ());
if (Wire.available ())
data[i] = Wire.read () ;
else {
Serial.println (F("i2cRead timeout"));
return 5; // This error value is not already taken by
endTransmission

}
}
}

return 0; // Success

}

46

TRITA TRITA-ITM-EX 2019:38

	kth-cover1586430563187315824.pdf
	blank.pdf
	kexp.pdf
	Contents
	Introduction
	Background
	Purpose
	Scope
	Method

	Theory
	System dynamics
	Dynamics of the system
	Motor dynamics
	State space model

	Control design
	Simulation and Pole Placement

	Sensors
	Accelerometer
	Gyroscope
	Hall effect sensor

	Kalman filter
	Controlling motors

	Design and implementation
	Motors
	Motor driver

	Measuring motor speed
	Inertial measurement unit
	Construction
	Code
	Tuning of the controller
	Automatic set point

	Results
	Discussion and conclusion
	Discussion
	Conclusion

	Recommendations and future work
	Recommendations
	Future work

	Bibliography
	Appendices
	Datasheets
	Schematics
	Code
	MATLAB code
	Arduino code

	blank.pdf
	kth-cover1586430563187315824
	blank.pdf
	kth-cover1586430563187315824.pdf
	blank.pdf
	kexp.pdf
	Contents
	Introduction
	Background
	Purpose
	Scope
	Method

	Theory
	System dynamics
	Dynamics of the system
	Motor dynamics
	State space model

	Control design
	Simulation and Pole Placement

	Sensors
	Accelerometer
	Gyroscope
	Hall effect sensor

	Kalman filter
	Controlling motors

	Design and implementation
	Motors
	Motor driver

	Measuring motor speed
	Inertial measurement unit
	Construction
	Code
	Tuning of the controller
	Automatic set point

	Results
	Discussion and conclusion
	Discussion
	Conclusion

	Recommendations and future work
	Recommendations
	Future work

	Bibliography
	Appendices
	Datasheets
	Schematics
	Code
	MATLAB code
	Arduino code

	blank.pdf
	kth-cover1586430563187315824

	kex (1).pdf
	Contents
	Introduction
	Background
	Purpose
	Scope
	Method

	Theory
	System dynamics
	Dynamics of the system
	Motor dynamics
	State space model

	Control design
	Simulation and Pole Placement

	Sensors
	Accelerometer
	Gyroscope
	Hall effect sensor

	Kalman filter
	Controlling motors

	Design and implementation
	Motors
	Motor driver

	Measuring motor speed
	Inertial measurement unit
	Construction
	Code
	Tuning of the controller
	Automatic set point

	Results
	Discussion and conclusion
	Discussion
	Conclusion

	Recommendations and future work
	Recommendations
	Future work

	Bibliography
	Appendices
	Datasheets
	Schematics
	Code
	MATLAB code
	Arduino code

	blank.pdf
	kth-cover1586430563187315824.pdf
	blank.pdf
	kexp.pdf
	Contents
	Introduction
	Background
	Purpose
	Scope
	Method

	Theory
	System dynamics
	Dynamics of the system
	Motor dynamics
	State space model

	Control design
	Simulation and Pole Placement

	Sensors
	Accelerometer
	Gyroscope
	Hall effect sensor

	Kalman filter
	Controlling motors

	Design and implementation
	Motors
	Motor driver

	Measuring motor speed
	Inertial measurement unit
	Construction
	Code
	Tuning of the controller
	Automatic set point

	Results
	Discussion and conclusion
	Discussion
	Conclusion

	Recommendations and future work
	Recommendations
	Future work

	Bibliography
	Appendices
	Datasheets
	Schematics
	Code
	MATLAB code
	Arduino code

	blank.pdf
	kth-cover1586430563187315824

